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Chapter 1. Introduction.

Information  theory  answers  two  fundamental 
questions  in  communication  theory:  What  is  the 
ultimate  data  compression  (answer:  the  entropy H), 
and  what  is  the  ultimate  transmission  rate  of 
communication (answer: the channel capacity C). For 
this reason some consider information theory to be a 
subset of communication theory.  We argue that it is 
much more. Indeed, it has fundamental contributions 
to  make  in  statistical  physics  (thermodynamics), 
computer  science  (Kolmogorov  complexity  or 
algorithmic complexity), statistical inference (Occam's 
Razor:  "The  simplest  explanation  is  best"),  and  to 
probability and statistics (error exponents for optimal 
hypothesis testing and estimation). 

Information  theory  is  related  to  physics  (statistical 
mechanics),  mathematics  (probability  theory), 
electrical  engineering  (communication  theory),  and 
computer science (algorithmic complexity). 

Chapter  2.  Entropy,  Relative  Entropy,  and 
Mutual Information

Entropy is  a  measure  of  the  uncertainty  of  a 
random variable; it is a measure of the amount of 
information required on the average to describe the 
random variable.

Definition: The entropy H(X) of a discrete random 
variable X is defined by:

 H  X =∑
x∈X

p x log p x

The entropy of  X can also be interpreted as the 
expected  value  of  the  random  variable log 1

pX  , 
where  X  is  drawn  according  to  a  mass  function 
p(x). Thus

H  X =E p log 1
p  X 

Properties of H
1. H  X ≥0
2. H b X =logb a H a X 
3. (Conditioning  reduces  entropy)  For  any 

two random variables, X and Y, we have 
H  X∣Y ≤H X   with equality iff X and 

Y are independent.

4. H  X 1, X 2, . . . , X n≤∑
 i=1

n

H  X i with 

equality  if  and  only  if  the  Xi  are 
independent.

5. H  X ≤log∣∣ With equality if and only if 
X is distributed uniformly over X

6. H(p) is concave in p.

A function  is  convex if  it  always  lies  below any 
chord.

Definition: A function f(x) is said to be convex over 
an interval (a,b) if for every x1, x2∈a ,b  and 0 ≤ 
λ ≤ 1

f  x11−x2≤ f x11− f x2
A function is said to be strictly convex if  equality 
holds only for λ = 0 or λ = 1

Relative  entropy is  a  measure  of  the  distance 
between two distributions;  it  is  a measure of  the 
inefficiency of  assuming that  the distribution is  q 
when the true distribution is p. The relative entropy 
or Kullback-Leiber distance is not a true distance 
between distributions since it is not symmetric and 
does not satisfy the triangle inequality.

Definition:  The  relative  entropy D(p||q)  of  the 
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probability  mass  function  p  with  respect  to  the 
probability mass function q is defined by:

D p∣∣q=∑
x

p x log px 
qx 

Mutual Information is  a measure of the amount of 
information that one random variable contains about 
another  random  variable;  it  is  a  reduction  in  the 
uncertainty  of  one  random  variable  due  to  the 
knowledge of another.

Definition: The  mutual  information between  two 
random variables X and Y is defined as:

I X ;Y =∑
x∈ X
∑
y∈Y

p x , y log p x , y
p x  p  y 

The mutual information of a random variable with itself 
is  the  entropy  of  the  random variable.   This  is  the 
reason that entropy is sometimes referred to as self-
information.

Alternative expressions.

H  X =E p log 1
p  X 

H  X ,Y =E p log 1
p X ,Y 

H  X∣Y =E p log 1
p X∣Y 

I X ;Y =E p log p X ,Y 
p X  p Y 

D X∣∣Y =E p log p X 
q  X 

Properties of D and I

I(X;Y) = H(X) – H(X|Y) 
= H(Y) – H(Y|X) 
= H(X) + H(Y) – H(X,Y)

D(p||q) ≥ 0 
with equality if and only if p(x) = q(x), for all x ͼ X

I(X;Y) = D(p(x,y) || p(x)q(y)) ≥ 0, 
with  equality  iff  p(x,y)  =  p(x)p(y)  (i.e.  X  and  Y  are 
independent)

If |X|=m, and u is the uniform distribution over X, then 
D(p||u) = log m – H(p)

D(p||q) is convex in the pair (p,q)

Chain Rules

Entropy:

 H  X 1, X 2,. . . , X n=∑
i=1

n

H X i∣X i−1 , .. . , X 1

Mutual Information:

I X 1 , X 2 , . . , X n∣Y =∑
i=1

n

I X i ;Y∣X 1, X 2, .. , X i−1

Relative entropy:
D  px , y∥q x , y =D  px ∥qx D  p x∣y∥q y∣x

Jensen's inequality. Jensen's inequality is one of 
the most widely used in mathematics and one that 
underlies many of the basic results in information 
theory.  If f is a convex function, then 

Ef  X ≥ f EX 

Log sum inequality. For n positive numbers, a1, 
a2,  . . . , an and b1, b2,  . . . , bn,

∑
i=1

n

ai log
ai

bi
≥∑

i=1

n

a i log∑i=1

n

ai

∑
i=1

n

bi

with equality iff 
a i

bi
=constant

Data processing inequality. The data-processing 
inequality  can  be  used  to  show that  no  cleaver 
manipulation of  the data  can improve  inferences 
that can be made from the data. 
If X → Y → Z forms a Markov chain,

I X ;Y ≥ I  X ;Z 

Sufficient  Statistic. A  statistic  T(X)  is  called 
sufficient for Ɵ if it contains all the information in X 
about Ɵ.
T(X) is sufficient relative to Ɵ iff I(Ɵ;X) = I(Ɵ;T(X)) 
for all distributions on Ɵ

A  statistic  T(X)  is  a  minimal  sufficient  statistic 
relative  to  {fƟ(x)} if  it  is a function of every other 
sufficient statistic U.

Fano's inequality. Relates the probability of error 
in guessing the random variable X to its conditional 
entropy  H(X|Y).  Let  Pe=Pr { X Y ≠X }
Then,

H PePe log∣X ∣≥H  X∣Y 

Inequality.  If  X  and  X'  are  independent  and 
identically  distributed  then 

PR X=X ' ≥2−H  X 
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Chapter 3. Asymptotic Equipartition Property.

AEP “Almost all event are almost equally surprising.” 
Specifically, if X1, X2, . . . are i.d.d. ~ p(x), then

−1
n

log p X 1, X 2, . . . , X nH  X 

in probability.

Definition: The sequence X1, X2, ... converges to a 
random variable X:

● In probability if for every ͼ>0, Pr{|Xn-X|>ͼ} → 0
● In mean square if E(Xn-X)2 → 0
● With probability 1 if Pr{limn→∞ Xn=X} = 1

Definition: The  typical  set  A∈
n is  the  set  of 

sequences x1, x2, . . . , xn satisfying
2−n H X ∈≤ px1, x2, . . . , xn≤2−n H  X −∈

Properties of the typical set.

If  x1, x2, . .. , xn∈A∈
 n then p  x1, x2,. .. , x n=2−nH±∈

Pr {A∈
n }1−∈ for n sufficiently large

∣A∈
n∣≤2n H  X ∈ , where |A| denotes the number 

of elements in set A

Thus  the  typical  set  has  probability  nearly  1,  all 
elements of  the typical  set  are  nearly  equiprobable, 
and the number of elements in the typical set is nearly 
2nH

Definition: 

an = bn means that 
1
n

log
an

bn
0 as n→∞

Smallest probable set. Let X1, X2, . . . , Xn be i.d.d. ~ 
p(x),  and  for  δ<½,  let  B

n⊂X n be  the  smallest 
subset  such  that  Pr {B

n }≥1− Then 

∣B
n∣=2nH

The typical  set  has essentially  the same number of 
elements  as  the  smallest  set,  to  first  order  in  the 
exponent.

Note that for a binary random variable with Pr(0)=0.1, 
Pr(1)=0.9, the typical sequences will have proportions 
close to 1:9 but this does not include the most likely 
single sequence of straight 1's.

Chapter  4  Entropy  Rates  of  a  Stochastic 
Process.

A stochastic process is said to be stationary if the 
joint distribution of any subset of the sequence of 
random variables is invariant with respect to shifts 
in the time index.

A  Markov  process is  a  stochastic  process  in 
which each random variable depends only on the 
one preceding it  and is conditionally independent 
of all the other preceding random variables.

A Markov chain is said to be time invariant if the 
conditional probability does not depend on n – the 
position in the chain.

A  stationary  distribution on  the  states  of  a 
Markov process is the same for n and n+1.

μ j=∑
i

μi P ij

Entropy Rate. Two definitions of entropy rate for a 
stochastic process are:

H  X =lim
n∞

1
n

H X 1, X 2, . . . , X n

H ' X =lim
n∞

H X n∣X n−1 , X n−2 , . .. , X 1

The first is the per symbol entropy of the n random 
variables,  and  the  second  is  the  conditional 
entropy of the last random variable given the past. 

For a stationary stochastic process:
H(X) = H'(X)

Entropy rate of a stationary Markov chain

H  X =−∑
ij

μi P ij log P ij

Second law of  thermodynamics. For  a Markov 
chain:
1. Relative entropy D(μn||μ'n) decreases with time
2. Relative  entropy  D(μn||μ)  between  a 

distribution  and  the  stationary  distribution 
decreases with time

3. Entropy  H(Xn)  increases  if  the  stationary 
distribution is uniform.

4. The  conditional  entropy  H(Xn|X1)  increases 
with time for a stationary Markov chain.

5. The conditional  entropy H(X0|Xn)  of  the initial 
condition X0 increases for any Markov chain.
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Functions of a Markov chain. If X1, X2, .... Xn form a 
stationary Markov chain and Yi Φ(Xi), then:

H Y n∣Y n−1 , . . .Y 1, X 1≤H Y ≤H Y n∣Y n−1 , . . .Y 1

lim
n∞

H Y n∣Y n−1 , . . . Y 1, X 1 =H Y =lim
n∞

H Y n∣Y n−1 , . ..Y 1

Chapter 5 Data Compression.

A  code  is  nonsingular if  every  element  of  the 
range  of  X  maps  onto  a  different  string  in  D*. 
However,  delimiter  is  required  to  transmit  a 
sequence.

The extension C* of a code C is the mapping from 
finite length strings of X to finite-length strings of D 
where each element is concatenated.

A  code  is  called  uniquely  decodable if  its 
extension is non-singular (ie every encoded string 
in  a  uniquely  decodable  code  has  only  one 
possible source string producing it)

A  code  is  called  a  prefix  code or  an 
instantaneous code if no codeword is a prefix of 
any other codeword.

Kraft  inequality.  The  set  of  codeword  lengths 
possible for instantaneous codes is limited by:
 instantaneouscodes⇔∑ D−l i≤1

A probability distribution is called D-adic if each of 
the probabilities is equal to D-n for some n.

McMillan inequality. The set of codeword lengths 
possible  for  uniquely  decodable  codes  is  limited 
by:
 Uniquely decodable codes⇔∑ D−li≤1

Entropy bound on data compression:
 L=∆∑ p i li≥H D  X 

Shannon code:

 
l i=⌈ logD

1
p i
⌉

H D X ≤LH D X 1
where ⌈ x ⌉ is the smallest integer ≥ x 

Huffman code: The Hauffman code is constructed 
by  recursively  combining  the  symbols  with  the 
lowest probability into a single source symbol until 
the  problem  has  reduced  to  one  symbol,  then 
assigning codewords to the symbols.
Code
word

X Probability

01 1 0.25 0.3 0.45 0.55 1

10 2 0.25 0.25 0.3 0.45

11 3 0.2 0.25 0.25

000 4 0.15 2

001 5 0.15
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L¿= min
∑ D−l i≤1
∑ p i li

H D X ≤L¿H D X 1
 

Hauffman coding:
● is optimal 
● is equivalent to “20 questions”
● can code weighted codewords
● can be used for slice codes (alphabetic codes)
● can  be sub-optimum when used  with  codeword 

lengths ⌈ log 1
p i
⌉  (Shannon coding)

● is similar to fano coding which divides the symbols 
into groups of nearly equal combined probability

Wrong code:
 

X≈ px  , l x =⌈ log 1
q
x ⌉ , L=∑ p x l x :

H  pD  p∥q≤LH  pD  p∥q 1

Shannon-Fano-Elias  coding assigns  codewords  to 
the midpoint of each discrete step in the cumulative 
distribution  function.  Unfortunately  S-F-E  coding 
calculations grow exponentially with block length and 
precision  grows  linearly.  Arithmetic  coding  is  an 
extension which resolves these issues.

Stochastic processes:  The number of fair coin flips 
required to generate a random variable with X drawn 
according to a specified probability mass function is 
equal to the Entropy.
 

H X 1, X 2,. .. , X n
n

≤Ln
H  X 1, X 2,. .. , X n

n
1

n

Stationary processes LnH  X 

Competitive  optimality  Shannon  code 

l x =⌈ log 1
p
x ⌉ versus any other code l'(x):

Pr l  X ≥l '  X c≤ 1
2c−1

Chapter 6 Gambling and Data Compression.

Doubling Rate:  The doubling rate  is the rate  at 
which  wealth  grows  when  each  outcome  has 
probability = pk, the bet placed on each outcome = 
bk and the payout on each outcome is okbk

 W b , p=E logS  X =∑k=1

m
pk log bk ok

Optimal doubling rate W*(p) =  maxbW(b,p)

Proportional gambling is log optimal. Where the 
bets placed are in proportion with the probability of 
the outcome.

W∗ p =max
b

W b , p=∑ pi log o i−H  p

is achieved by b*=p

Growth rate. Wealth grows as Sn=2nW*(p)

The  doubling  rate  is  equal  to  the  difference 
between the distance of the bookies estimate from 
the  true  distribution  and  the  distance  of  the 
gamblers estimate from the true distribution

W(b,p) =  D(p||r) - D(p||b)

Conservation law. For uniform odds, H(p) + W*(p) 
= log m

Side Information. In a horse race X, the increase 
∆W in doubling rate due to side information Y is 
∆W = I(X;Y)

Any sequence on which a gambler makes a large 
amount of money is also a sequence that can be 
compressed by a large factor.

The entropy of English is approx 1.3 bits.
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Chapter 7 Channel Capacity.

Channel  capacity: The logarithm of  the number of 
distinguishable inputs is given by:

C=max
p x

I X ;Y 

During compression, we remove all the redundancy in 
the  data  to  form  the  most  compressed  version 
possible, whereas during data transmission,  we add 
redundancy in a controlled fashion to combat errors in 
the channel.

Examples
● Binary symmetric channel C=1-H(p)
● Binary erasure channel C=1-α
● Symmetric channel C=log|Y| - H(row of transition 

matrix)

Properties of C
● 0 ≤ C ≤ min {log|X|, log|Y|}
● I(X;Y) is a continuous concave function of p(x)

Joint Typicality. We decode a channel output Yn as 
the ith index if the codeword Xn(i) is “jointly typical” with 
the received signal Yn.

The set  Aϵ
n of jointly typical sequences {(xn,  yn)} 

with respect to the distribution p(x,y) is given by

∣−
1
n

log p xn−H X ∣ϵ ,
Aϵ
n=xn , ynϵ X n×Y n :

∣−1
n

log p  yn−H Y ∣ϵ ,

∣−1
n

log p xn , yn−H  X ,Y ∣ϵ
where p xn , yn=∏i=1

n
p x i , yi 

Joint  AEP.  Let  (Xn,  Yn)  be  sequences  of  length  n 
drawn i.i.d according to

 p xn , yn=∏i=1

n
p x i , y i then:

● Pr  X n , Y n ϵ Aϵ
n1as n∞

● ∣Aϵ
n∣≤2n h X ,Y ϵ 

●
If  X n , Y n~ p xn p  yn ,

then Pr  X n , Y nϵ Aϵ
n≤2−n  I  X ;Y −3ϵ

Channel coding theorem. All rates below capacity C 
are achievable, and all rates above capacity are not; 
that is for all rates R < C, there exists a sequence of 
(2nR,n)  codes  with  probability  of  error  λ(n)  →  0. 
Conversely,  for  rates R > C,  λ(n)  is  bounded away 
from 0.

A Hamming code is an example of a parity check 
code where one or more parity bits are added to 
the end of the transmitted sequence which depend 
on  various  subsets  of  the  information  bits. 
Hamming  codes  can  be  visualised  as  a  Venn 
diagram where each region of overlap represents 
one information bit  and each region belonging to 
just one set is a parity bit. The location of an error 
can be inferred from the location of the parity bit.

Feedback capacity. Feedback does 
not  increase  capacity  for  discrete 
memoryless channels (i.e., CFB = C)

Source-channel  theorem. A 
stochastic process with entropy rate 
H  cannot  be  sent  reliably  over  a  discrete 
memoryless channel  if  H > C. Conversely,  if  the 
process  satisfies  the  AEP,  the  source  can  be 
transmitted reliably if H < C.

“The result - that a two-stage process is as good 
as any one - stage process-seems so obvious that 
it  may be  appropriate  to  point  out  that  it  is  not 
always  true.  There  are  examples  of  multi-user 
channels where the decomposition breaks down. 
We also consider two simple situations where the 
theorem  appears  to  be  misleading.  A  simple 
example  is  that  of  sending  English  text  over  an 
erasure channel. We can look for the most efficient 
binary representation of the text and send it over 
the channel. But the errors will be very difficult to 
decode.  If,  however,  we  send  the  English  text 
directly over the channel, we can lose up to about 
half the letters and yet be able to make sense out 
of  the  message.  Similarly,  the  human  ear  has 
some  unusual  properties  that  enable  it  to 
distinguish speech under very high noise levels if 
the  noise  is  white.  In  such  cases,  it  may  be 
appropriate  to  send  the  uncompressed  speech 
over the noisy channel rather than the compressed 
version. Apparently, the redundancy in the source 
is suited to the channel.” pg 219

“The data compression theorem is a consequence 
of the AEP, which shows that there exists a "small" 
subset  (of  size  2nH)  of  all  possible  source 
sequences that contain most of the probability and 
that we can therefore represent the source with a 
small probability of error using H bits per symbol. 
The  data  transmission  theorem is  based  on  the 
joint  AEP;  it  uses  the  fact  that  for  long  block 
lengths, the output sequence of the channel is very 
likely to be jointly typical with the input codeword, 
while  any  other  codeword  is  jointly  typical  with 
probability  ≈ 2-nI.  Hence,  we  can  use  about  2nI 

codewords and still  have negligible  probability  of 
error.  The  source-channel  separation  theorem 
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shows that we can design the source code and the 
channel code separately and combine the results to 
achieve optimal performance.” pg 222

Chapter 8 Differential Entropy

Differential entropy is the entropy of a continuous 
random  variable.  Differential  entropy  can  be 
negative but the volume of the support set must be 
non-negative. 

h  X =h  f =−∫S
f x  logf xdx

if it exists.

AEP for continuous random variables.

f X n=2−nh X 

Properties of the typical set  Aϵ
n parallel those 

for the discrete random variable.

Vol Aϵ
n =2nh X 

The entropy of a n-bit quantisation of a continuous 
random variable X is, on average, the number of 
bits required to describe X to n-bit accuracy.

H [X ]2−n≈h X n

The entropy of the Normal distribution with mean μ 
and variance σ:

h N 0,σ 2=1
2

log 2πeσ2 bits

The entropy of  a  multivariate  Normal  distribution 
with mean μ and covariance matrix K:

h N n μ , K =1
2

log 2πe n∣K∣ bits

The relative entropy (or Kullback-Leibler distance) 
between two densities is defined by:

D f ‖ g =∫ f log f
g
≥0

Chain rule for differential entropy:

h  X 1, X 2, . .. X n=∑i=1

n
h X i∣X 1, X 2, .. . , X i−1

h  X∣Y ≤h  X  with  equality  iff  X and Y are 
independent.

h aX =h X log∣a∣

Mutual Information:
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I X ∣Y =∫ f x , y log f x , y 
f  x f  y

≥0

The  multivariate  normal  distribution  maximises  the 
entropy  over  all  distributions  with  the  same 
covariance:

max
EXX t=K

h X =1
2

log 2πen∣K∣

Given side information Y and estimator  X Y  , it 
follow that:

E  X− X Y 2≥ 1
2πe

e2h  X∣Y 

2nH  X  is the effective alphabet size for a discrete 
random variable.

2nh X  is  the  effective  support  set  size  for  a 
continuous random variable.

2C is  the  effective  alphabet  size  of  a  channel  of 
capacity C.

Chapter 9 Gaussian Channel.

The most important continuous alphabet channel is 
the  Gaussian  channel.  It  is  modelled  as  a  time 
discrete channel with output Yi at time i, where Yi is 
the sum of the input Xi and the noise Zi. The noise 
is  drawn i.i.d.  From a Gaussian distribution.  The 
most common limitation on the input is an energy 
or power constraint. 

The information capacity of the Gaussian channel 
is: C=max f x : EX 2≤P I  X ;Y 

Maximum entropy.

maxEX 2=α h  X =1
2

log 2πeα

Gaussian Channel.

Y i=X iZ i ;
Z i~N 0, N  ;

Power constraint 1
n∑i=1

n
x i

2≤P ;and

C=1
2

log 1 P
N
 bits per transmission

Constructing (2nC,n) codes with a low probability 
of  error  is  analogous  to  sphere  packing.  The 
received vector is normally distributed around the 
mean of the codeword and with noise variance. It 
is contained within a sphere of n Nϵ   with 
high probability.

Bandwidth  additive  white  Gaussian  noise 
channel. 

 

BandwidthW ;
two−sided power spectral density N 0/2 ;

signal power P ;and

C=W log 1 P
N 0 W



One of  the most  famous formulas in  information 
theory.

Water-filling (k parallel Gaussian channels) 
Considers the case where the noise on the parallel 
channels  is  independent.  The  objective  is  to 
distribute the total power among the channels so 
as to maximise the capacity.
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Y j=X jZ j , j=1,2,. .. , k ;
Z j~N 0, N j ;

∑ j=1

n
X j

2≤P ;and

C=∑
i=1

k 1
2

log 1
v−N i

+

N i


where v is chosen sothat∑ v−N i
+=nP

As the signal power is increased from zero, we allot 
the power to the channels with the lowest noise.

Additive non-white Gaussian noise channel.
Considers the case where the noise on the channels 
is  dependent  (parallel  channels  or  channels  with 
memory). Let KZ be the covariance matrix of the noise, 
and KX be the input covariance matrix.

Y i=X iZ i ;
Z n~N 0, K Z ; and

C=1
n∑i=1

n 1
2

log 1
v− λi

+

λi


where λ1, λ2,. .. , λn are the eigenvalues of K Z

and v is chosen sothat∑ v−N i
+=P

In  this  case,  the  above  water-filling  argument 
translates to water-filling in the spectral domain. For 
channels  in  which  the  noise  forms  a  stationary 
stochastic process, the input signal should be chosen 
to be a Gaussian process with a spectrum that is large 
at frequencies where the noise spectrum is small. 

As in the discrete case, feedback does not increase 
capacity  for  memoryless  Gaussian  channels. 
However, for channels with memory, where the noise 
is  correlated  from  time  instant  to  time  instant, 
feedback does increase capacity.

Capacity without feedback

Cn= max
tr K X ≤nP

1
2n

log
∣K XK Z∣
∣K Z∣

Capacity with feedback

Cn , FB= max
tr K X ≤nP

1
2n

log
∣K XZ∣
∣K Z∣

feedback bounds

Cn , FB≤Cn
1
2

Cn , FB≤2Cn

bits per transmission.

Chapter 10 Rate Distortion Theory.

A  continuous  random  source  requires  infinite 
precision to represent  it  exactly,  so a we cannot 
represent  it  exactly  with  a  finite  rate  code.  The 
question  is  then  to  find  the  best  possible 
representation  for  any  given  data  rate.  Given  a 
source distribution and a distortion measure, what 
is the minimum expected distortion achievable at a 
particular rate. Interestingly,  joint descriptions are 
more efficient than individual descriptions, even for 
independent random variables.

Quantization. The  Lloyd  algorythm  constructs  a 
good  quantization  by  starting  with  a  set  of 
reconstruction  points,  finding  the  optimal  set  of 
construction  regions  (nearest  neighbours  with 
respect  to  the  distortion  measure),  then  find  the 
optimal reconstruction points for these regions and 
interate.

Rate  distortion. The  information  rate  distortion 
function  for  a  source  X  ~  p(x)  and  distortion 
measure d x , x   is:

RD = min
p  x∣x:∑ x, x

p x p  x∣xd  x , x≤D
I  X ; X 

where  the  minimisation  is  over  all  conditional 
distributions  p x , x for  which  the  joint 
distribution  p x , x= p x p  x∣x satisfies 
the expected distortion constraint.

Rate distortion theorem. If R>R(D), there exists a 
sequence of codes X n X n with the number of 
codewords  ∣ X n·∣≤2nR with 

Ed  X , X n X n D .  If  R<R(D),  no  such 
codes exist.

Bernoulli  source. For  a  Bernoulli  source  with 
Hamming distortion,
R(D) = H(p) – H(D)

Gaussian  Source. For  a  Gaussian  source  with 
squared-error distortion.

RD=1
2

log σ2

D
Each  bit  of  description  reduces  the  expected 
distortion by a factor of 4. With a 1-bit description, 
the  best  expected  square  error  is  σ2/4.  A  1-bit 
quantization of N(0,σ2) random variable usine two 
regions corresponding to the +ve and -ve real lines 
and  reproduction  points  as  the  centroids,  the 

expected distortion is 
π−2

π
σ2=0.3633σ2

Hence,  we  can  achieve  a  lower  distortion  by 
considering  several  distortion  problems  in 
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succession (long block lengths) than can be achieved 
by considering them separately

Source-channel  separation. A  source  with  rate 
distortion R(D) can be sent over a channel of capacity 
C  and  recovered  with  distortion  D  if  and  only  if 
R(D)<C.

Multivariate  Gaussian  Source. The  rate  distortion 
function  for  a  multivariate  normal  vector  with 
Euclidean  mean-squared-error  distortion  is  given  by 
reverse water-filling on the eigenvalues. We choose a 
constant  λ and only describe those random variables 
with variances greater than  λ.

We  can  transform  a  good  code  for  channel 
transmission into a good code for rate distortion. The 
essential idea is to fill the space of source sequences: 
In channel transmission, we want to find the largest 
set of code words that have a large minimum distance 
between  codewords,  whereas  in  rate  distortion,  we 
wish to find the smallest set of codewords that covers 
the entire space. 

Chapter 11. Information Theory and Statistics

The  method  of  types  is  a  powerful  method  in 
deviation theory which considers sequences which 
have the same empirical distribution. 

Definition: The  type Px (or  empirical  probability 
distribution)  of  a  sequence  x1,  x2,...,  xn is  the 
relative proportion of occurrences of each symbol 
X (i.e., Px(a) = N(a|x)/n for all aϵX, where N(a|x) is 
the number of  times the symbol a occurs in the 
sequence xϵXn.

Basic identities
∣Pn∣=n1∣X∣

Qn x=2−n D P x ‖Q H P x

∣T P ∣=2nH P 

Qn T P=2−nD P‖ Q

These  equations  state  that  there  is  only  a 
polynomial number of types and that there are an 
exponential  number  of  sequences  of  each  type. 
There is an exact formula for the probability of any 
sequence of  type P under distribution Q and an 
approximate formula for the probability  of  a type 
class.

The crucial point is that it follows that at least one 
type has exponentially many sequences in its type 
class. In fact, the largest type class has essentially 
the same number of elements as the entire set of 
sequences, to the first order in the exponent.

Since the probability of each type class depends 
exponentially  on  the  relative  entropy  distance 
between the type  P and the  distribution Q,  type 
classes that are far away from the true distribution 
have exponentially smaller distribution.

Universal Data Compression
Huffman coding compresses an i.i.d source with a 
known  distribution  p(x)  to  its  entropy  limit  H(X). 
However if the code is designed for some incorrect 
distribution  q(x),  a  penalty  of  D(p||q)  is  incurred. 
Surprisingly,  there is  a universal  code of  rate  R, 
say, that suffices to describe every i.i.d source with 
entropy H(X)<R.

Pe
n≤2−nD P R

* ‖Q  for allQ
where DP R

* = min
P :H  P≥R

DP ‖ Q 

However,  universal  source  codes  need  a  longer 
block length to obtain the same performance as a 
code  defined  specifically  for  the  probability 
distribution.. We pay a penalty for this increase in 
block  length  by  the  increased  complexity  of  the 
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encoder and decoder.

Large deviations (Sanov's theorem)
Estimates the probability of a set of non-typical types. 
The  probability  that  a  sample  will  show  a  large 
deviation from the expected outcome is exponentially 
small.  (We  can  estimate  the  exponent  using  the 
central limit theorem but this is a poor approximation 
for more than a few standard deviations).

Qn E = Q nE∩Pn ≤ n1∣X ∣2−nD P* ‖ Q

D  P* ‖Q  = min
P∈E

D P ‖Q
If E is the closure of its interior, then

Qn E=2−nD P* ‖Q 

L1 bound on relative entropy. 
Convergence in relative entropy implies convergence 
in the L1 norm.

D  P1 ‖ P2 ≥
1

2ln2
∥P1−P2∥1

2

Pythagorean theorem. 
Many of  the  intuitive  properties  of  distance  are  not 
valid for D(P||Q) which behaves like the square of the 
Euclidean distance.

If E is a convex set of types, distribution
 Q∉E , and P* achieves,
 D  P* ‖Q  = minP∈E D P ‖Q we have
 D  P ‖Q ≥ D P‖ P*DP*‖Q  for all 
 P∈E

Conditional Limit Theorem. 
The conditional limit  theorem implies that  there is a 
very high probability that the type observed is close to 
P* where P* is probability of the closest type. This is 
established by considering the empirical distribution of 
the sequence of outcomes given that the type is in a 
particular set of distributions E. The probability of E is 
essentially determined by D(P||Q), the distance of the 
closest element of E to Q, and the conditional type is 
essentially P*, and the probability of other types, that 
are far away from P* is negligible.

If X1, X2,..., Xn i.i.d. ~ Q, then
Pr X 1=a∣P X n∈E   P*a   in probability,

where P* minimizes D(P‖Q) over P∈E .
 In particular,

Pr {X 1=a∣1
n∑i=1

n

X i≥α}  Q a e λa

∑x
Q xeλx

Neyman-Pearson  lemma. The  optimal  test 
between two  densities P1 and P2 has a  decision 
region of the form

accept P=P1 if
P1 x1, x2,. ... , xn
P2 x1, x2,. ... , x n

T

Chernoff-Stein lemma.
The  Chernoff-Stein  lemma  considers  hypothesis 
testing in the case where one of the probabilities of 
error is held fixed and the other is made as small 
as  possible.  The  other  prorbability  of  error  is 
exponentially small, with an exponential rate equal 
to  the  relative  entropy  between  the  two 
distributions.  The best  achievable error  exponent

βn
ϵ if αn≤ϵ : 

βn
ϵ=min

An⊆X n

αn≤ϵ

β n

lim
n∞

1
n

log βn
ϵ = −DP1‖ P2

Chernoff information. 
The Bayesian approach assigns prior probabilities 
to  both  hypotheses  and  minimises  the  overall 
probability of error given by the weighted sum of 
the  individual  probabilities  of  error.  The  best 
achievable exponent for a Bayesian probability of 
error is:

D*=DPλ* ‖ P1=D P λ* ‖ P2 where

P λ=
P1

λ x P2
1− λx 

∑a∈X
P1

λ x P2
1− λ x

with

λ=λ*chosen so that
D Pλ ‖ P1=D P λ ‖ P2

Fisher information.
A standard problem in  statistical  estimation is  to 
determine a parameter  θ  of a distribution from a 
sample  of  data  drawn  from that  distribution.  An 
estimator T is meant to approximate the value of 
the parameter. The bias is the expected value of 
the  error  in  the  estimator.  However,  a  bias  =  0 
does not guarantee that the error is low with high 
probability. A loss function of the error is required ; 
most commonly the expected square of the error. 

J θ =Eθ[ ∂
∂θ

ln f  x ;θ]
2

The Fisher information is a measure of the amount 
of “information” about  θ that is present in the data. 
It is a lower bound on estimating  θ from the data.

John A Brown www.nhoj.info 2007

http://www.nhoj.info/


Cover & Thomas Elements of Information Theory 2006

Cramer-Rao inequality. 
The Cramer-Rao inequality is a lower bound on the 
variance of all unbiased estimators. For and unbiased 
estimator T of  θ,

Eθ T  X −θ 2=var T ≥ 1
J θ 

Fisher information is defined with respect to a family 
of  parametric  distributions,  unlike  entropy,  which  is 
defined for all  distributions. Entropy is related to the 
volume of the typical set and Fisher information to the 
surface area of the typical set.

Chapter 12 Maximum Entropy

The  temperature  of  a  gas  corresponds  to  the 
average kinetic energy of the molecules in the gas. 
What can we say about the distribution of velocities 
in the gas at a given temperature? We know from 
physics  that  this  distribution  is  the  maximum 
entropy  distribution  under  the  temperature 
constraint,  otherwise  known  as  the  Maxwell- 
Boltzmann  distribution.  The  maximum  entropy 
distribution  corresponds  to  the  macro  state  (as 
indexed by the empirical distribution) that has the 
most  micro  states  (the  individual  gas  velocities). 
Implicit in the use of maximum entropy methods in 
physics  is  a  sort  of  AEP  which  says  that  all 
microstates are equally probable. 

Maximum  Entropy  Distribution. Let  f  be  a 
probability density satisfying the constraints

∫
S

f x  rix =αi for 1≤i≤m

Let  f *x = f λ x =eλ0∑i=1

m
λi ri x , x∈S and  let 

λ0,...,λm be  chosen  so  that  f*  satisfies  the 
constraints. Then f* uniquely maximises h(f) overall 
f  satisfying  these  constraints.  F  is  a  density  on 
support set S meeting certain moment constraints 
α1, α2,..., αm

Example:  dice,  no  constraints.  Let  S  = 
{1,2,3,4,5,6}.  The  distribution  that  maximises  the 
entropy  is  the  uniform  distribution,  p(x)=1/6  for 

s∈S
Example  used  by  Boltzman -  dice  with 

EX=∑ ipi=α That is, n dice are thown which 
sum to  nα  then  what  proportion  of  the  dice  are 
showing each face? 
Example:  S=[0,∞] and EX=μ.  The distribution of 
the height of molecules in the atmosphere.
 
Maximum entropy spectral density estimation. 
Burg  assumed  a  process  was  stationary  and 
Gaussian  and  found  that  the  process  that 
maximises  the  entropy  subject  to  the  correlation 
constraints is an autoregressive Gaussian process 
of the appropriate order.

The entropy rate of a stochastic process subject to 
autocorrelation  constraints  R0,  R1,...,  Rp is 
maximised  by  the  pth order  zero-mean  Gauss-
Markov process satisfying these constraints.  The 
maximum entropy rate is

h*=1
2

log 2πe
∣K p∣
∣K p−1∣

and the maximum entropy spectral density is 
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S λ= σ 2

∣1∑
k=1

p

a k e−ikλ∣
2

Chapter 13 Universal Source Coding

If the probability distribution underlying the source 
is unknown, then we cannot apply the methods of 
Chapter  5  directly  (e.g.  Huffman  coding)  unless 
two passes of the data are made. However, there 
are  online  algorithms  that  use  the  probability 
distribution  of  the  inbound  data  to  guide  the 
compression, and these do well for any distribution 
within  a  class  of  distributions.  In  an  individual 
sequence  (i.e.  text  and  music)  there  is  no 
underlying probability distribution. We compare our 
performance  to  that  achievable  by  optimal  word 
assignments with respect to Bernoulli distributions 
or  kth-order  Markov  processes.  The  ultimate 
compression  of  an  individual  sequence  is  the 
Kolmogorov complexity.

Ideal word length. If the distribution is known.

l *x = log 1
p
x

Average  description  length. As  a  basis  for 
comparison.

E p l *x =H  p

Estimated  probability  distribution p x 
increases the word length by an amount equal to 
the relative entropy between the estimate an the 
actual.

 
If l x =log 1

p x
, then

E p
l x =H  pD  p ‖ p

Average redundancy of using universal coding.
R p=E p l  X −H  p

Minimax redundancy. 

 
For X~pθ x , θ∈θ

D *=min
l

max
p

R p=min
q

max
θ

D pθ ‖q

This  minimax  redundancy  is  achieved  by  a 
distribution  q  that  is  at  the  'center'  of  the 
information ball containing the distributions pθ, that 
is, the distribution q whose maximum distance from 
any of the distributions pθ is minimised.

Minimax theorem. D*=C, where C is the capacity 
of the channel {θ, pθ(x), X}.

This is  a  channel  with  the rows of  the transition 
matrix  equal  to  the  different  pθ's,  the  possible 
distributions  of  the  source.  The  minimax 
redundancy is equal to the capacity of this channel 
and the corresponding optimal coding distribution 
is the output distribution of this channel induced by 

John A Brown www.nhoj.info 2007

http://www.nhoj.info/


Cover & Thomas Elements of Information Theory 2006

the capacity-achieving input distribution.

Bernoulli  sequences. For  Xn ~  Bernoulli(θ),  the 
redundancy is

Dn
*=min

q
max

θ
D pθ x

n ‖q xn≈1
2

log nolog n 

That is, the cost of describing the sequence is about 
½log(n) bits above the optimal cost with the Shannon 
code for a Bernoulli distribution corresponding to k/n.

Arithmetic  coding.  The  objective  of  the  arithmetic 
coding  algorithm  is  to  represent  a  sequence  of 
random  variables  by  a  subinterval  in  [0,1].  As  the 
algorithm observes more input symbols the length of 
the subinterval  corresponding to the input  sequence 
decreases. As the top and bottom ends of the interval 
get closer they begin to agree in the first few bits and 
they  can  be  output.  The  process  continues  on  the 
remaining  subinterval  until  the  whole  sequence  is 
output.  The  procedure  achieves  an  average  block 
length within 2 bits of the entropy for any block-length.

nH bits of F(xn) reveal approximately n bits of xn.

Lempel-Ziv coding.  The key idea of the Lempel-Ziv 
algorithm is  to parse the string into  phrases and to 
replace phrases by pointers to where the same string 
has occurred in the past. The differences between the 
algorithms  is  based  on  differences  in  the  set  of 
possible  match  locations  (and  match  lengths)  the 
algorithm allows.

Lempel-Ziv  coding  (recurrence  time  coding). Let 
Rn(Xn)) be the last time  in the past that we have seen 

a block of n symbols Xn, Then 
1
n

log RnH  X  , 

and encoding by describing  the recurrence time is 
asymptotically  optimal.  Used  in  zip  and  gzip 
implementations. 

Lempel-Ziv  coding  (sequence  parsing).  If  a 
sequence is parsed into the shortest phrases not seen 
before (e.g. 011011101 is parsed to 0,1,10,11,101,...) 
and  l(xn)  is  the  description  length  of  the  parsed 
sequence, then,

lim sup 1
n

l  X n≤H  X  with probability1

for  every  stationary  ergodic  process  (Xi).  Used  in 
compress in Uni, modems and the GIFF format.

Chapter 14 Kolmogorov Complexity

Definition: The  Kolmogorov complexity K(x) of a 
string x is:

K x = min
p :U  p =x

l  p

K x∣l x= min
p :U  p ,l  x=x

l  p

Kolmogorov complexity is the minimum length over 
all programs that print x and halt.

Universality  of  Kolmogorov complexity.  There 
exists  a  universal  computer  U such that  for  any 
other computer A,

K ux ≤K ax c A
for any string x,  where the constant  cA does not 
depend  on  x.  If  U  and  A  are  universal 
∣K U x −K A x∣c  for all x.

Upper bound on Kolmogorov complexity.
K x | l x  ≤ l x c

K x  ≤ K x | l x2 log l x c

Komologrov  complexity  and  entropy. If  X1, 
X2,..., Xn are i.d.d. Integer-valued random variables 
with entropy H, there exists a constant c such that 
for all n,

H ≤ 1
n

EK  X n |n ≤ H∣X∣ log n
n
 c

n

Lower bound on Kolmogorov complexity. There 
are no more than 2k strings x with complexity K(x) 
<  k.  If  X1,  X2,...,  Xn are  drawn  according  to 
Bernoulli(½) process.

Pr K  X 1, X 2 .. . X n |n ≤ n−k 2−k

Definition. A  sequence  x  is  said  to  be 

incompressible if 
K  x1, x2 ... xn | n

n
1

Strong  law  of  large  numbers  for 
incompressible sequences

K  x1, x2 , ... , xn
n

1 ⇒ 1
n∑i=1

n

x i
1
2

Definition. The universal probability of a string x is
PU x  = ∑

p :U  p =x
2−l  p = Pr U  p=x 

This  is  the  probability  that  a  randomly  drawn 
program will print out the string x. 

Most sequences of length n have complexity close 
to  n.  Shorter  programs are much more probable 
than  longer  ones.  That  is,  there  are  not  enough 
programs to go around.
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The halting problem and the non-computability of 
Kolmogorov complexity.  Both these are related to 
Godells  incompleteness  theorem  and  all  three  are 
bases on self-referential ideas like “This sentence is 
false.”
Universality  of  PU(x). For  every  computer  A, 

PU x ≥c A P Ax  for  every  string x∈{0,1}*
where the constant cA depends only on U and A.

Definition. 
Ω= ∑

p:U  phalts
2−l  p = Pr U  phalts  

is the probability that the computer halts and the input 
p to the computer is a binary string drawn according to 
a Bernoulli(½) process.

Properties of Ω
● Ω is not computable. The halting problem.
● Ω  is  a  “philosopher's  stone”.  Knowing  Ω  to  an 

accuracy  of  n  bits  will  enable  us  to  decide  the 
truth  of  any  provable  of  finitely  refutable 
mathematical theorem that can be written in less 
than n bits.

● Ω is algorithmically random (incompressible).

Universal  Gambling. Is  based  on  PU(x)  and  does 
asymptotically as well  as a scheme that uses of the 
true distribution.

Equivalence  of  K(x)  and  log  1
PU  x

 . There 

exists a constant c independent of x such that,

∣log 1
PU x 

−K x ∣≤c

for  all  strings  x.  Thus the universal  probability  of  a 
string x is  essentially  determined by its Kolmogorov 
complexity.

Notice that the ideal Shannon code length assignment

l x =log 1
p x 
 achieves  an  average 

description  length  H(X),  while  in  Kolmogorov 
complexity theory, the ideal description length 

log  1
PU x 

 is  almost equal  to  K(X).  Thus 

log  1
p x 
 is  the  natural  notion  of  descriptive 

complexity of x in algorithmic as well as probabilistic 
settings.

Definition. The  Kolmogorov  structure  function 
K k xn |n  of  a  binary  string  xn∈{0,1}n is 

defined as,
K k x

n |n= min
p :l  p≤k

U  p ,n =S
x∈S

log∣S∣

Definition. Let k* be the least k such that,
K k ¿x

n |nk* = K xn |n
Let S** be the corresponding set and let p** be the 
program that prints out the indicator function of S**. 
Then  p**  is  the  Kolmogorov  minimal  sufficient  
statistic for x.
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Chapter 15 Network Information Theory

I  have  not  read  this  chapter  –  it  did  not  appear 
relevant to my interests (and it was also long)

Chapter  16  Information  Theory  and  Portfolio 
Theory

I have not read this chapter.

Chaper 17 Inequalities in Information Theory

This chapter is a brutal summary of the key aspects of 
the  previous  chapters  with  a  similarly  brutal 
introduction of some additional results.

There may be important aspects here if attempting to 
construct new proofs – particularly in relation to Fisher 
Information.

Further Reading

• pg  508  “A  non-technical  introduction  to  the 
various measures of complexity can be found 
in a thought provoking book by Pagels, H. The 
Dreams  of  Reason:   the  Computer  and  the 
Rise of the Sciences of Complexity. Simon and 
Schuster, New York 1988.

• pg  171  non-technical  introduction  to  the 
estimation  of  various  information  sources 
including  English  is  Lucky  ,  R.  W.  (1989) 
Silicone  Dreams:  Information,  Man  and 
Machine. St Martins Press, New York.
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