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Part I. Steps to a deterministic interpretation of 
chaotic signals.

1. Descriptions of Turbulence.

How does one explain a situation in which one gets 
a signal (time series) which is chaotic?

One way is  with  stochastic  evolution  equations of 

the  form: d x t 
dt

= F x t wt  where  w(t)  is 

the noise term (eg a stochastic process)

Another  way  involves  the  presence  of  many 
oscillators  in  a  quasi  periodic  attractor:
x t  = f w1 t ,w2 t ,... ,w k t  = f 1,2,... ,k 

The  number  k  of  frequencies  in  a  quasiperiodic 
motion  id  defined  as  the  minimum  number  of 
rationally independent frequencies of the form which 
are present in the Fourier transform (ie the modes of 
the system)

An indicator of the qualitative nature of motion is the 
power  spectrum or  frequency spectrum which can 
distinguish  a  periodic  spectrum,  a  quasiperiodic 
spectrum and a continuous spectrum.

The main problem with the quasiperiodic theory of 
turbulence is that when there are nonlinear coupling 
between oscillators,  it  very often happens that  the 
time evolution does not remain quasiperiodic. This 
feature  is  called  sensitive  dependence  on  initial 
conditions and turns out to be the conceptual key to 
reformulating the problem of turbulence.

This  type of  motion,  although purely  deterministic, 
has those stochastic features referred to as chaos.

The  existence  of  sensitive  dependence  on  initial 
conditions was initially noticed by Hadamard in the 
late 1800's in studies of geodesic flow on surfaces 
with  constant  negative  curvature.  While  it  was 
remembered by mathematicians, it was forgotten by 
physicists until Lorenz in 1963.

dx
dt

= − x y

dy
dt

= − xyrx− y

dz
dt

= xy−bz

The Lorenz system describes a set of points on a 
trajectory  of  a  geometrical  object  known  as  a 
strange attractor. A strange attractor is an infinite set 
of  points  in  a  m-dimensional  space,  which 
represents  the  asymptotic  behaviour  of  a  chaotic 
system.

A  time  evolution  which  is  chaotic  in  this  sense 
usually exhibits as continuous power spectrum.

The power spectrum is only an indicator but not very 
useful for specific analysis because the 'dimension' 
of  chaotic  motion  is  not  related  to  the  number  of 
independent frequencies.

2. A bit more on turbulence. The Navier-Stokes 
equation.

dvi
dt

 ∑
j
v j
dvi
dx j

= v vi − 1
  f i

∑
i=1

d dvi
dxi

= 0

where, the second equation is the incompressibility 
condition, f is the external force per unit volume, ρ is 
the constant density, p is the pressure and v is the 
constant kinematic viscosity.

These  equations  have  a  unique  solution  in  2 
dimensions but in 3 dimensions it is not known if the 
velocity  develops  singularities.  The  existence  of 
singularities  have  been  studied  and  isolated  to 
regions in space-time. However, the whole problem 
may be non-physical  and simply not  occur  in  real 
fluids  where,  for  instance,  one  has  to  avoid  large 
negative pressures (cavitation) – a condition which 
is ignored in the mathematical models.

mα is called the Hausdorff measure in dimension α. 
Given a non-empty set  S,  with a metric,  and r>0, 
denote by σ a covering of S by a countable family of 
subsets  σk of diameter rk≤r

mS  = lim
r 0+

mr
 S  ,

where

mr
 = inf

 {∑k=1
∞

r k 
}

When r decreases, the infimum extends over smaller 
and  smaller  classes  of  coverings  and  hence  mα 

increases, or at least does not decrease.

Generally,  a  system has  a  stable  equibrium  state 
represented by a fixed point attractor in the phase 
space M. The aim of the geometric theory of chaos 
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is to give some predictions of the following form: if 
the attractor undergoes some qualitative changes as 
an experimental control parameter μ is varied, then 
certain other changes are likely to happen as μ is 
varied  further.  We  are  far  from  a  complete 
classification  of  possible  scenarios,  but  three  are 
relatively well understood:
1. Ruelle-Takens scenario through quasiperiodicity;
2. Feigenbaum scenario through period doubling;
3. Pomeau-Manneville  scenario  through 

intermittency.

Turbulence remains a very difficult topic but we do 
know  that  chaos  is  involved  and  that  any  theory 
omitting chaos is inadequate (eg those that start with 
stochastic  equations  or  consider  purely 
quasiperiodic motions).

Deterministic noise cannot be removed by improving 
experimental apparatus.

3. The Hénon mapping.

x t1 = y t 1−a [a t ]2

y t1 = bx t 

The  Hénon  model  is 
more  handy  for 
numerical  explorations 
because it is discrete in 
time and 2 dimensional 
(in  contrast  to  Navier-
Stokes). 

It  simulates  the 
stretching  in  one 
direction  and  folding 
over  which  a  typical 
behaviour  with  the 
Lorenz system.

4. Capacity and Hausdorf Dimension.

Roughly  speaking,  the  dimension  of  a  set  is  the 
amount of information needed to specify points in it 
accurately.  The  Lebesgue  measure  considers  the 
combined length of disjoint segments. Often we are 
interested in invariant sets with Lebesgue measure 
zero (e.g. the Hénon map) and in which is bigger.

The capacity is given by:

dimK A=lim
r0
sup logN r , a 

log 1/r 

The  Hausdorff  dimension  of  A  is  defined  by 
considering the behaviour of mα(A) not as a function 
of A, but as a function of α. 

dimH A = sup {α :mα A=∞} = inf {α :mα A=0}

For the Cantor  set the capacity and the Hausdorf 
dimension coincide (log 2 / log 3).

Mandelbrot introduced 'fractal dimension' to refer to 
the Hausdorf  dimension but  other authors use the 
same term for the capacity.

The information dimension dimHρ is defined as the 
minimum of the Hausdorf dimension of the sets A for 
which ρ(A)=1, where ρ is a probability measure.

5 Attracting Sets and Attractors.

The   Hénon  mapping  is  a  dissipative  system 
because each mapping contracts by a factor b (the 
Jacobian).

● The Lorenz system is continuous and R3

● The  Hénon system is discrete and R2

● The  Navier-Stokes  system  is  continuous  and 
infinite

● Hadamard's  geodesic  flow is  continuous  on  a 
compact manifold.

We introduce the nonlinear time evolution operators 
ft,  with  the  property  f 0=x  and 
f t1t 2 x= f t1○ f t2 x

Set  A  will  be  called  an  attracting  set  with 
fundamental neighbourhood U if it satisfies:

1. Attractivity: for every open set V⊃A we have 
f tU⊂V for all sufficiently large t.

2. Invariance: f t A=A for all t

The attracting Sets basin of attraction is defined to 
be the set of initial points x such that ftx approaches 
A.

The operational definition of an attractor is the set on 
which experimental points ftx accumulate for large t. 
It should be invariant but need not be stable under 
noise.

3. Irreducibility: one can choose a point x'ϵA such 
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that for each xϵA there is a positive t such that 
ftx' is arbitrarily close to x (topological transitivity)

4. Sensitive  dependence  on  initial  conditions:  A 
strange attractor  is defined by the fact  that  its 
asymptotic measure has a positive characteristic 
exponent.

An attractor (eg Feigenbaum attractor) can have a 
fractal  structure  without  being chaotic;  an attractor 
which is not an attracting set.

While  sensitivity  to  initial  conditions  means  that  a 
modest  number  of  iterations  may  have  results  at 
“opposite  ends”  of  an attracting set,  the statistical 
properties of the results are invariant.

5. Stability  under  small  random  perturbations: 
small  random  perturbations  must  be 
asymptotically  concentrated  on  attractors  and 
the asymptotic measure ρ must be stable under 
such perturbation.

6 Extracting geometric information from a time 
series.

Phase space pictures can be reconstructed from the 
experimental observation of a single coordinate x(t), 
bypassing the detailed knowledge of the underlying 
dynamics.

The  general  technique  of  this  approach  is  to 
generate  several different scalar signals xk(t) from 
the original x(t) in such a way as to reconstruct an N-
dimensional  space  where,  under  some conditions, 
we can obtain a good representation of the attractor.

The  easiest  way  to  do  this  it  to  use  time  delays 
(originally derivatives were used: x1=x(t), x2=ẋ(t) ...)

xk t  = x tk−١ with k=١...N

There are some theorems which state that, in order 
to  obtain  a  good  projection  of  πA  (without 
trajectories crossing each other),  N must be about 
twice the Hausdorff dimension of A.

(a) The time series x(t) of the bromide concentration 
in the Belousov-Zhabotinsky reaction.

(b) Plot  of  the reconstructed attractor in the plane 
(x(t), x(t+τ)).

(c) Poincare section of the attractor along the cut.
(d) First return map of the Poincare section.

This procedure is only feasible with low-dimensional 
attractors.

Part II The ergodic theory of chaos

7 Invariant probability measures.

The essential  fact  is  the existence of  a probability 
measure ρ on M, which is invariant under the time 
evolution of ft.

The notion of Radon measure is that one can define 
the measure  ρ by:

 = ∫x  dx

We say that any continuous linear functions in C0(M) 
-  the  class  of  continuous  functions  on  a  compact 
metric  space  M  -  is  a  measure  on  M  (Radon 
measure)

invariance :  = ○ f t
where ○ f tx= f t

Consider the map:
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f x  = { 2x , if x∈[0, 1
2
)

2x−1, if x∈[ 12 ,1 )}
This mapping can be considered to be on the unit 
circle (in the sense that it wraps around onto it own 
perimeter) or as a shift operator (in the sense that 
the most significant decimal is removed and all the 
less  significant  digits  are  promoted).  Clearly  ρ  is 
invariant under the shift.

Ergodicity:  An  invarient  probability  measure   ρ  is 
ergodic  or  indecomposable  if  it  does  not  have  a 
nontrivial convex decomposition.

 = 11−2,withne
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